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Abstract. De Raedt et al. [Eur. Phys. J. B 53, 139 (2006)] have claimed to provide a local realist model for
correlations of the singlet state in the familiar Einstein-Podolsky-Rosen-Bohm (EPRB) experiment when
time-coincidence is used to decide which detection events should count in the analysis, and furthermore
that this suggests that it is possible to construct local realistic models that can reproduce the quantum
mechanical expectation values. In this letter we show that these conclusions cannot be upheld since their
model exploits the so-called coincidence-time loophole. When this is properly taken into account no startling
conclusions can be drawn about local realist modelling of quantum mechanics.

PACS. 03.65.Ud Entanglement and quantum nonlocality – 03.65.Ta Foundations of quantum mechanics

De Raedt et al. [1] have recently claimed to have con-
structed a local realist model for correlations of the sin-
glet state, in which time-coincidence is used to decide
which detection events should count in the analysis. Fur-
thermore, they claim that their model maximally violates
the well-known Clauser-Horne-Shimony-Holt (CHSH) in-
equality [2], and conclude that their work “suggests that
it is possible to construct event-based simulation models
that satisfy Einstein’s criteria of local causality and real-
ism and can reproduce the expectation values calculated
by quantum theory” [1].

Here, we will put the model used by De Raedt et al. in
its proper context and show that, although the model gives
the sinusoidal correlations familiar from quantum mechan-
ics, the conclusions drawn by De Raedt et al. cannot be
upheld. This is because their model is based on post-
selection, something which is known to enable quantum-
like correlations from a local realist model. This possibility
was first noted by Pearle in the late sixties [3] and has re-
ceived quite some interest in the years that followed [4,5]
and has been especially active more recently [6–12, . . . ];
a full list of references would be immense. We will see
below that the model in its general form exploits the so-
called “coincidence-time loophole” [13], and that the usual
CHSH inequality is inappropriate for this situation be-
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cause of the postselection. The appropriately modified in-
equality is not violated by the De Raedt et al. model,
even though it gives quantum-like correlations. Notable is
also that the post-selection procedure for coincidence in
time used by De Raedt et al. is not used in all experi-
mental realizations of the EPRB experiment [14,15] and
consequently their model cannot reproduce all experimen-
tal realizations of the EPRB experiment (see e.g., [16]).
Since this is the case, we would argue that no startling
conclusion can be drawn from the model about local real-
ist modelling of quantum-mechanical singlet correlations,
nor about local realist modelling of quantum mechanics
in general.

Let us first go through some notation. The setup of the
EPRB experiment has two measurement stations i = 1, 2
with Stern-Gerlach magnets that can be set to measure-
ment directions a1 and a2 respectively, and the angular
difference between these settings is denoted α. The local
hidden variable in the model of De Raedt et al. is denoted
Sn,i (event number n, station i) and is a direction in space.
From this hidden variable, the model gives results xn,i and
detection times tn,i with time resolution τ . Coincidences
only occur when the detection times are within a time
window of width W , i.e., when

|tn,1 − tn,2| ≤ W. (1)
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These coincidences are used to calculate the correlations
of the outcomes xn,i for different setting combinations (see
Eq. ([1]:3)). This is exactly the same kind of modeling as
that discussed in [13].

In the limit where W = τ → 0 (i.e., where the time
window and the time-tag resolution both go to zero) De
Raedt et al. obtain the sinusoidal correlation of the sin-
glet state from their model. They then argue that this
correlation violates the well-known CHSH inequality

∣
∣E(a, c) − E(a,d) + E(b, c) + E(b,d)

∣
∣ ≤ 2, (2)

where E(a,b) is the correlation between outcomes for set-
tings a and b, etc. They furthermore claim that the maxi-
mal quantum violation is obtained using their model (i.e.,
where the left-hand side of (2) is 2

√
2). However, inequal-

ity (2) is not valid for their model; the correlations they
calculate (that reach 2

√
2) are not of the form of the ones

on the left-hand side of (2).
The problem is the postselection of events that are

close enough in time for which “[. . . ] the simultaneity of
two detection events will depend on both settings, even
though the underlying physical processes that control this
are completely local” [13]. A postselection procedure of
this kind invalidates the original CHSH inequality (2)
since the ensemble on which the correlations are evalu-
ated changes with the settings, while (2) requires them
to remain the same; see [6,13]. The correlation calculated
in [1] is not E(a1,a2), as was claimed, but

E(a1,a2|Λa1a2) = −a1 · a2, (3)

where E(a1,a2|Λa1a2) is the conditional correlation, con-
ditioned on a coincidence for the settings a1 and a2. Con-
sequently, inequality (2) cannot be used. The appropriate
inequality includes this conditioning on coincidence and
reads [13]

∣
∣E(a, c|Λac) − E(a,d|Λad)

+ E(b, c|Λbc) + E(b,d|Λbd)
∣
∣ ≤ 6

γ
− 4. (4)

The quantity γ is the probability of coincidence. Quan-
tum mechanical correlations that violate the CHSH in-
equality (2) by the value 2

√
2 will violate (4) only if

γ > γ0 = 3 − 3/
√

2 ≈ 0.8787; this bound is necessary and
sufficient (see [13] for further details). That is, if γ ≤ γ0,
it is possible to construct a local realist model that gives a
value of 2

√
2 on the left-hand side. Such a model is given

in [13] which furthermore saturates the bound.
Let us now go back to the model of De Raedt et al. If

W = τ � 1, we have

γ ≤ 8τ cot
α

2
, α �= 0, (5a)

γ � 6πτ2/3, α = 0, (5b)

(see Appendix A) so evidently the value of γ approaches
zero when W = τ → 0. This is below the bound specified
above and, although the model gives sinusoidal correla-
tions — and may be interesting as such — it does not

violate the relevant Bell inequality (4)1. For other local
realist models with a sinusoidal interference pattern, but
with a nonzero probability of coincidence see, e.g., refer-
ences [7,8].

In conclusion, even though the model by De Raedt
et al. [1] does give (conditional) correlations as strong as
quantum mechanics, it does not model the singlet state as
such, because in the model the probability of coincidence
must go to zero to obtain the sinusoidal interference pat-
tern. This means that the model does not violate the rel-
evant Bell inequality, because it is far below the relevant
coincidence-probability bound γ0 ≈ 0.8787. In addition,
this is far below the coincidence probabilities of previously
published local realist models [7,8]. Finally, even though
De Raedt et al. claim their model can reproduce the coin-
cidences of recent experimental results, it cannot: optical
experiments reach γ ≈ 0.05 [17] and ion-trap experiments
even reach γ = 1 [16]; the latter consequently does not fall
prey to the coincidence-time loophole2. This reinforces the
conclusion drawn in [13] of the importance of eliminating
postselection in future EPRB experiments, and, as we’ve
seen here, postselection must be duly accounted for in any
local realist modelling of them.

Appendix A

The probability of coincidences γ of the model in [1] is
given by the denominator of ([1]:6) and can be calculated
using the density of coincidences

P (T1, T2, W ) ≤ τ
min(T1, T2)

T1T2
. (6)

The above bound is valid when W = τ and is given in [1].
One should also remember that

P (T1, T2, W ) ≤ 1, (7)

since it is the probability that a coincidence occurs given
the values of the hidden variables Sn,i and the settings ai.
When τ � 1 and α �= 0 (i.e., a1 �= a2) the inequality (7)
is automatically satisfied when (6) is, and

γ =
∫ π

0

∫ 2π

0

P (T1, T2, W ) sin θdθdφ

≤ τ

∫ π

0

∫ 2π

0

min(T1, T2)
T1T2

sin θdθdφ

= 2τ

∫ 2π

0

min
(

sin2 φ, sin2(φ − α)
)

sin2 φ sin2(φ − α)
dφ = 8τ cot

α

2
. (8)

1 Actually, since De Raedt et al. use W = τ (time window
length equals time resolution), they are in effect using the more
well-studied “efficiency loophole” [3,5,6], but that is perhaps
more of a technical side note.

2 Nor to the detection loophole.



M.P. Seevinck and J.-Å. Larsson: Comment on “A local realist model for correlations of the singlet state” 53

For the case when α = 0 (i.e., a1 = a2 and T1 = T2), the
requirement (7) needs to be taken into account, and

γ =
∫ π

0

∫ 2π

0

P (T1, T2, W ) sin θdθdφ

≤
∫ π

0

∫ 2π

0

min
(

τ

Ti
, 1

)

sin θdθdφ

=
∫ π

0

∫ 2π

0

min
(

τ

(1 − cos2 φ sin2 θ)3/2
, 1

)

sin θdθdφ

= 4π

(

τ2/3
√

1 − τ2/3 +
τ2/3

1 +
√

1 − τ2/3

)

≈ 6πτ2/3. (9)

The last approximation is good when τ � 1.
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10. J.-Å. Larsson, J. Semitecolos, Phys. Rev. A 63, 022117
(2001)

11. S. Massar, S. Pironio, Phys. Rev. A 68, 062109 (2003)
12. A. Cabello, J.-Å. Larsson, quant-ph/0701191 (2007)
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